

 $\begin{array}{c} {\rm QE}\ e/\nu \\ {\rm Scattering} \end{array}$

Nuclear interaction

Nuclear currents

e/
u scattering

Sum rules

Response functions

Role of pn correlations

Summary

Quasielastic (QE) e/ν Scattering and Two-Body Currents

R. Schiavilla

Theory Center, Jefferson Lab, Newport News, VA 23606, USA Physics Department, Old Dominion University, Norfolk, VA 23529, USA

April 25, 2014

QE e/ν scattering and two-body currents

 $\begin{array}{c} {\rm QE}\,e/\nu \\ {\rm Scattering} \end{array}$

Nuclear interaction

Nuclear currents

 e/ν scattering

Sum rules

Response functions

Role of pn correlations

Summar

Outline:

- Nuclear interactions and electroweak currents: a review
- Role of two-body currents in inclusive e/ν scattering: the enhancement of the one-body response
- pn pairs in nuclei and the excess strength induced by two-body currents
- Summary

In collaboration with:

A. Lovato S. Gandolfi L.E. Marcucci S. Pastore J. Carlson S.C. Pieper G. Shen R.B. Wiringa

Nuclear interactions

QE e/ν Scattering

Nuclear interaction

currents

 e/ν scattering

Sum rules

Respons functions

Role of pn correlations

- $v = v_0(\text{static}) + v_p(\text{momentum dependent}) \rightarrow v(\text{OPE})$ fits large NN database with $\chi^2 \simeq 1$
- *NN* interactions alone fail to predict:
 - spectra of light nuclei
 - Nd scattering
 - nuclear matter $E_0(\rho)$
- 2π -NNN interactions

NNN interactions: beyond 2π -exchange

Pieper and Wiringa, private communication

QE e/ν Scattering

Nuclear interaction

Nuclea

 e/ν scatterin

Sum rule

Response functions

Role of pn correlations

- IL7 model: parameters (\sim 4) fixed by a best fit to the energies of low-lying states (\sim 17) of nuclei with $A \le 10$
- AV18/IL7 Hamiltonian reproduces well:
 - spectra of A=9–12 nuclei (attraction provided by IL7 in T=3/2 triplets crucial for p-shell nuclei)
 - low-lying p-wave resonances with J^{π} =3/2 $^-$ and 1/2 $^-$ as well as low-energy s-wave (1/2 $^+$) scattering

Spectra of light nuclei

Pieper and Wiringa, private communication

QE e/ν Scattering

Nuclear interaction

Nuclear currents

 e/ν scattering

Sum rule

Respons functions

Role of pn correlations

EM current operators I

Marcucci et al. (2005)

QE e/ν Scattering

Nuclear interactions

Nuclear

 e/ν scatterin

Sum rule:

Response functions

Role of pn correlations

$$\mathbf{j} = \mathbf{j}^{(1)}$$

$$+ \mathbf{j}^{(2)}(\mathbf{v}) + \begin{vmatrix} \mathbf{\pi} & \mathbf{p} \cdot \mathbf{w} \\ + \mathbf{j}^{(3)}(\mathbf{v}^{2\pi}) \end{vmatrix}$$

$$+ \mathbf{j}^{(3)}(\mathbf{v}^{2\pi})$$

$$\mathbf{j}^{(2)}(\mathbf{v}) \xrightarrow{\text{long range}} \mathbf{\pi} + \begin{vmatrix} \mathbf{\pi} & \mathbf{p} \cdot \mathbf{w} \\ \mathbf{p} \cdot \mathbf{w} \end{vmatrix}$$

- Static part v_0 of v from π -like (PS) and ρ -like (V) exchanges
- Currents from corresponding *PS* and *V* exchanges

$$\mathbf{j}_{ij}(v_0; PS) = i G_E^V(Q^2) \left(\boldsymbol{\tau}_i \times \boldsymbol{\tau}_j\right)_z v_{PS}(k_j) \left[\boldsymbol{\sigma}_i - \frac{\mathbf{k}_i - \mathbf{k}_j}{k_i^2 - k_j^2} \boldsymbol{\sigma}_i \cdot \mathbf{k}_i\right] \boldsymbol{\sigma}_j \cdot \mathbf{k}_j + i \leftrightharpoons j$$

with
$$v_{PS}(k) = v^{\sigma \tau}(k) - 2\,v^{t\tau}(k)$$
 projected out from v_{0}

EM current operators II

 $\begin{array}{c} \operatorname{QE} e/\nu \\ \operatorname{Scattering} \end{array}$

Nuclear interaction

Nuclear

 e/ν scattering

Sum rules

Response functions

Role of pn correlations

Summary

ullet Currents from v_p via minimal substitution in i) $\underline{\mbox{explicit}}$ and ii) implicit p-dependence, the latter from

$$\tau_i \cdot \tau_j = -1 + (1 + \sigma_i \cdot \sigma_j) e^{i(\mathbf{r}_{ji} \cdot \mathbf{p}_i + \mathbf{r}_{ij} \cdot \mathbf{p}_j)}$$

Currents are conserved

$$\mathbf{q} \cdot \left[\mathbf{j}^{(1)} + \mathbf{j}^{(2)}(v) + \mathbf{j}^{(3)}(V^{2\pi}) \right] = \left[T + v + V^{2\pi} \,,\, \rho \right]$$

contain no free parameters, and are consistent with short-range behavior of v and $V^{2\pi}$, but are not unique

• EM current (and charge) operators also derived in χ EFT up to one loop (Pastore *et al.* 2009-2013; Kölling *et al.* 2009-2011)

Isoscalar and isovector MFF of ³He/³H

 $\begin{array}{c} {\sf QE}\,e/\nu \\ {\sf Scattering} \end{array}$

Nuclear interaction

current

 e/ν scattering

Sum rule

Respons functions

Role of procorrelation

- Isoscalar two-body current contributions small
- Leading isovector two-body currents from OPE

EM charge operators

 $\begin{array}{c} {\rm QE}\,e/\nu \\ {\rm Scattering} \end{array}$

Nuclear interaction

currents

scattering

Sum rules

Response functions

Role of pn correlations

(a) =
$$v_{ij}^{\pi} \frac{1}{E_i - E} \frac{F_1^S + F_1^V \tau_{i,z}}{2} \rightarrow \text{included in IA}$$

- $\frac{v_{PS}(k_j)}{2 m} \boldsymbol{\sigma}_i \cdot \mathbf{q} \, \boldsymbol{\sigma}_j \cdot \mathbf{k}_j \, \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j \, \frac{F_1^S + F_1^V \tau_{i,z}}{2} + \mathcal{O}(E_i - E)$

- Crucial for predicting the CFF's of ²H, ³H, ³He, and ⁴He
- Additional (small) contributions from vector exchanges as well as transition mechanisms like $\rho\pi\gamma$ and $\omega\pi\gamma$

⁴He CFF

Viviani et al. (2007)

 $\begin{array}{c} \operatorname{QE} e/\nu \\ \operatorname{Scattering} \end{array}$

Nuclear interaction

Nuclea current

e/
u scattering

Sum rules

Response

Role of pn correlations

¹²C CFF

Lovato et al. (2013)

 $\begin{array}{c} \operatorname{QE} e/\nu \\ \operatorname{Scattering} \end{array}$

Nuclear interactions

Nuclea current

e/
u scattering

Sum rules

Response

Role of pn correlations

Weak current operators

 $\frac{\mathsf{QE}\,e/\nu}{\mathsf{Scattering}}$

Nuclear interaction

Nuclear

e/
u scattering

Sum rules

functions

Role of pn correlations

Summary

• Charge-changing (CC) and neutral (NC) weak currents (ignoring s-quark contributions)

$$j_{CC}^\mu=j_\pm^\mu+j_\pm^{\mu5}$$

$$j_{NC}^\mu=-2\sin^2\!\theta_W\,j_{\gamma,S}^\mu+\left(1-2\sin^2\!\theta_W\right)j_{\gamma,z}^\mu+j_z^{\mu5}$$
 with $j_\pm=j_x\pm i\,j_y$ and the CVC constraint

$$[T_a, j^{\mu}_{\gamma,z}] = i \epsilon_{azb} j^{\mu}_b$$

- Contributions to two-body axial currents from π and ρ exchange, $\rho\pi$ transition, and Δ -excitation (g_{Δ}^{*})
- Strategy: fix g_A^* (or $d_R(\Lambda)$ in χ EFT) by fitting the GT m.e. in ${}^3{\rm H}$ β -decay

Predictions for μ -capture rates on 2 H and 3 He

Marcucci et al. (2012-2013)

QE e/ν Scattering

Including radiative corrections [Czarnecki, Marciano, and Sirlin (2007)]

	$\Gamma_0(^3{\sf He})~{\sf s}^{-1}$
EXP	1496(4)
SNPA(AV18/UIX)	1496(8)
χ EFT*(AV18/UIX)	
$\Lambda = 500 \text{ MeV}$	1497(8)
$\Lambda = 600~\text{MeV}$	1498(9)
$\Lambda = 800 \; \text{MeV}$	1498(8)

scattering

Sulli Tule:

Response functions

Role of pn correlations

Summary

 Chiral potentials (N3LO/N2LO) and currents lead conservatively to

$$\Gamma(^{2}H) = 399(3) \text{ sec}^{-1}$$
 $\Gamma(^{3}He) = 1494(21) \text{ sec}^{-1}$

Studies of weak transitions in light nuclei in progress

Inclusive e/ν scattering

 $\begin{array}{c} {\rm QE}\,e/\nu \\ {\rm Scattering} \end{array}$

Nuclear interaction

Nuclear

scattering

Sulli Tule:

Response functions

Role of pn correlations

Summary

• Inclusive $\nu/\overline{\nu}$ (-/+) cross section given in terms of five response functions

$$\frac{d\sigma}{d\epsilon' d\Omega} = \frac{G^2}{8\pi^2} \frac{k'}{\epsilon} \left[v_{00} R_{00} + v_{zz} R_{zz} - v_{0z} R_{0z} + v_{xx} R_{xx} \mp v_{xy} R_{xy} \right]$$

$$R_{\alpha\beta}(q,\omega) \sim \overline{\sum_{i}} \sum_{f} \delta(\omega + m_A - E_f) \langle f \mid j^{\alpha}(\mathbf{q},\omega) \mid i \rangle^* \langle f \mid j^{\beta}(\mathbf{q},\omega) \mid i \rangle$$

- In (e,e') scattering, interference $R_{xy}\!=\!0$, $j_{\gamma}^z\sim(\omega/q)j_{\gamma}^0$, and only $R_{00}\!=\!R_L$ and $R_{xx}\!=\!R_T$ are left
- Theoretical analysis via:
 - sum rules
 - explicit calculations of $R_{\alpha\beta}$

Ab initio approaches to inclusive scattering (IS)

 $\begin{array}{c} {\rm QE}\,e/\nu \\ {\rm Scattering} \end{array}$

Nuclear interaction

Nuclear

e/
uscattering

Sum rule:

Response functions

Role of pn correlation

Summary

Response functions require knowledge of continuum states: hard to calculate for $A \geq 3$

- Sum rules: integral properties of response functions
- Integral transform techniques

$$E(q,\tau) = \int_0^\infty d\omega K(\tau,\omega) R(q,\omega)$$

and suitable choice of kernels (i.e., Laplace or Lorentz) allows use of closure over $|f\rangle$

 While in principle exact, both these approaches have drawbacks

Sum rules

Schiavilla et al. (1989); Carlson et al. (2002-2003)

 $\begin{array}{c} {\rm QE}\,e/\nu \\ {\rm Scattering} \end{array}$

Nuclear interaction

Nuclea

 e/ν scattering

Sum rule:

Response functions

Role of pn correlations

Summarv

$$S_{\alpha}(q) = C_{\alpha} \int_{\omega_{\text{th}}^{+}}^{\infty} d\omega \frac{R_{\alpha}(q, \omega)}{G_{Ep}^{2}(q, \omega)}$$
$$= C_{\alpha} \left[\langle 0 | O_{\alpha}^{\dagger}(\mathbf{q}) O_{\alpha}(\mathbf{q}) | 0 \rangle - | \langle 0 | O_{\alpha}(\mathbf{q}) | 0 \rangle |^{2} \right]$$

- C_{α} are normalization factors so as $S_{\alpha}(q \to \infty) = 1$ when only one-body terms are retained in O_{α}
- Direct comparison between theory and experiment for inclusive (e, e') problematic:
 - $R_{\alpha}(q,\omega)$ measured by (e,e') up to $\omega_{\max} \leq q$
 - present theory ignores explicit pion production mechanisms, crucial in the Δ -peak region of R_T

Coulomb sum rule A=2–4 nuclei

Schiavilla et al. (1989,1993)

 $\begin{array}{c} {\rm QE}\,e/\nu \\ {\rm Scattering} \end{array}$

Nuclear interaction

Nuclea

e/
u scattering

Sum rules

Response functions

Role of pn correlations

Coulomb sum rule in ¹²C

Lovato et al. (2013)

Scattering

 $QE e/\nu$

Nuclear interactions

Nuclear currents

 e/ν scatterin

Sum rules

Response functions

Role of pn correlations

- Theory and experiment in reasonable agreement; new JLab data on ¹²C forthcoming . . .
- ullet Contribution for $\omega>\omega_{
 m max}$ estimated by assuming

$$R_L(q, \omega > \omega_{\text{max}}; A) \propto R_L(q, \omega; \text{deuteron})$$

EM transverse sum rule in 12C

Lovato et al. (2013)

 $\begin{array}{c} \operatorname{QE} e/\nu \\ \operatorname{Scattering} \end{array}$

Nuclear interaction

Nuclea: currents

 e/ν scattering

Sum rules

Response functions

Role of pn correlation

- Large contribution from two-body currents
- Comparison with experiment problematic
- Small q divergence due to choice of normalization

$$C_T = \frac{2}{Z\,\mu_p^2 + N\,\mu_n^2} \frac{m^2}{q^2}$$

Weak NC $S_{xx}(q)$ (transverse) sum rule in 12 C

Lovato et al. (2014)

QE e/ν Scattering

Nuclear interaction

Nuclea: currents

e/
u scatterin

Sum rule

Respons functions

Role of pn correlation:

- Large increase ($\sim 30\%$) in the weak NC transverse response R_{xx} due to two-body (2b) currents
- Important interference effects in $S_{\alpha\beta}$ between 1b and 2b (as well as among 2b) terms

Weak NC sum rules in 12C

 $\begin{array}{c} {\rm QE}\,e/\nu \\ {\rm Scattering} \end{array}$

Nuclear interaction

Nuclea: currents

 e/ν scatterin

Sum rules

Response functions

Role of pn correlations

Response functions

Carlson and Schiavilla (1992,1994)

 $\begin{array}{c} {\sf QE}\,e/\nu \\ {\sf Scattering} \end{array}$

Nuclear interaction

Nuclea

e/
u scatterin

Sum rule:

Response functions

Role of pn correlations

Summar

• Direct calculation in ${}^2{\rm H}$; calculation of Euclidean response functions in $A \geq 3$

$$\begin{split} \widetilde{E}_{\alpha}(q,\tau) &= \int_{\omega_{\text{th}}^{+}}^{\infty} d\omega \, \mathrm{e}^{-\tau(\omega - E_{0})} \, \frac{R_{\alpha}(q,\omega)}{G_{Ep}^{2}(q,\omega)} \\ &= \langle 0 \, | \, O_{\alpha}^{\dagger}(\mathbf{q}) \mathrm{e}^{-\tau(H - E_{0})} O_{\alpha}(\mathbf{q}) \, | \, 0 \rangle - (\mathrm{elastic \ term}) \end{split}$$

- \bullet $e^{-\tau(H-E_0)}$ evaluated stochastically with QMC
- At $\tau=0$, $\widetilde{E}_{\alpha}(q;0)\propto S_{\alpha}(q)$; as τ increases, $\widetilde{E}_{\alpha}(q;\tau)$ is more and more sensitive to strength in QE region
- Inversion of $\widetilde{E}_{\alpha}(q;\tau)$ difficult; in EM case, Laplace transform data instead

EM euclidean response functions in ⁴He

Carlson et al. (2002)

 $\begin{array}{c} {\sf QE}\,e/\nu \\ {\sf Scattering} \end{array}$

Nuclear interaction

Current

 e/ν scattering

Sum rule

Respons functions

Role of p_T correlation

Summary

and $E_L(q,\tau) \to Z$ for a collection of protons initially at rest

- The $\tau \gtrsim 0.01 \, \text{MeV}^{-1}$ region sensitive to QE strength
- Large enhancement of R_T in QE region

Weak NC response functions in $^2\mathrm{H}$

Lovato et al. (2014)

 $\begin{array}{c} {\rm QE}\,e/\nu \\ {\rm Scattering} \end{array}$

Nuclear interaction

Nuclea current

 e/ν scattering

Sum rule

Response functions

Role of pn correlations

Summai

Excess strength systematics in EM R_T

 $\begin{array}{c} {\rm QE}\ e/\nu \\ {\rm Scattering} \end{array}$

Nuclear interaction

Nuclear

 e/ν scatterin

Sum rules

Response functions

correlation

Summary

ullet A-dependence of $\Delta S_T \!=\! S_T - S_T^{1\mathrm{b}}$

 $QE e/\nu$

A-systematics of ΔS_T

Carlson et al. (2002)

Scattering

Current

 e/ν scatterin

Sum rules

Response functions

Role of pn correlations

Summa

$$\Delta S_T \propto \langle 0 \mid \sum_{l < m} \left[(j_l^{\dagger} + j_m^{\dagger}) j_{lm} + \text{h.c.} \right] + \sum_{l < m} j_{lm}^{\dagger} j_{lm} + \dots \mid 0 \rangle$$

Neglecting 3- and 4-body terms

$$\Delta S_T^{\mathbf{A}}(q) \simeq C_T \int_0^\infty dx \operatorname{tr} \left[F(x;q) \, \rho^{\mathbf{A}}(x;pn) \right]_{\sigma\tau} = \int_0^\infty dx \, I^{\mathbf{A}}(x)$$

• Scaling property $\rho^{A}(x; pn, T=0) \simeq R_{A} \rho^{d}(x)$ and similarly for T=1 pn pairs with $\rho^{d} \longrightarrow \rho^{qb}$; hence

$$I^{\mathbf{A}}(x)$$
 scales as $\frac{R_{\mathbf{A}}}{Z \,\mu_p^2 + N \,\mu_n^2}$

Scaling of pair densities in nuclei

Forest et al. (1996)

 $\begin{array}{c} {\rm QE}\ e/\nu \\ {\rm Scattering} \end{array}$

Nuclear interaction

Nuclea: currents

e/
u scattering

Sum rules

Response functions

Role of pn correlations

A-scaling property of ΔS_T

 $\begin{array}{c} {\rm QE}\,e/\nu \\ {\rm Scattering} \end{array}$

Nuclear interaction

Nuclear

scatterin

Sum rules

Response

correlation

Summary

After rescaling by $R_A/\left(Z\mu_p^2+N\mu_n^2\right)$, the integrand $I^A(x)$ is about the same in all nuclei

np and pp momentum distributions in nuclei

Wiringa et al. (2014)

QE e/ν Scattering

Nuclear interaction

Nuclea

e/
u scattering

Sum rule

Respons

Role of pn

Summa

Summary

 $\begin{array}{c} {\rm QE}\,e/\nu \\ {\rm Scattering} \end{array}$

Nuclear interaction

Nuclear currents

 e/ν scattering

Sum rules

Response functions

Role of pn correlations

- Large enhancement due to two-body currents in sum rules of electroweak response functions
- There is a direct link between this enhancement and the short-range structure of pn pairs in nuclei
- This short-range structure also drives the increase of the one-body response due to two-body currents
- Calculations of EM transverse response in 4 He show an excess strength as large as $\sim 30\%$ in QE region
- Calculations of NC (and CC) Euclidean response functions in ¹²C are in progress